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Transverse Magnetic Wave Propagation in

Sinusoidally Stratified Dielectric Media

C. YEH, MEMBER, IEEE, K. F. CASEY, AND Z. A. KAPRIELIAN, MEMBER, IEEE

Abstracf—The problem of the propagation of TM waves in a

sinusoidally stratified dielectric medium is considered. The propaga-

tion characteristics are determined from the stability diagram of the

resultant Hill% equation. Numerical results show that the stability

diagrams for Hill’s equation and those for Mathieu’s equation are

quite different. Consequently, the dispersion properties of TM

waves and TE waves in this stratified medium are also different.

Detailed dispersion characteristics of TM waves in an infinite strati-

fied medium and in waveguides filled longitudinally with this strati-

fied material are obtained.

INTRODUCTION

~ HE PROBLEM OF electromagnetic wave propa-

T
gation in a sinusoidally varying dielectric medium

is not only of interest from a theoretical point of

view but also possesses many possible applications [1],

[2]. For example, a section of waveguic[e filled with this

type of inhomogeneous dielectric may be used as a band-

pass filter in the mm or in the optical range. The use of

an ultrasonic standing wave as a modulating device for

certain pressure sensitive media, such as carbon disul-
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1964. The work in this paper was supported by the Technical Ad-
visory Committee of the Joint Services Electronics Program.

The authors are with the Dept. of Electrical Engineering, Uni-
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fide, pentane, or nitric acid at optical frequencies to

achieve a sinusoidally varying dielectric medlium may

be proposed. Other applications, such as the study of

acoustically modulated plasma column and the analysis

of sinusoidally modulated dielectric slab antenna, have

also been proposed. Furthermore, the results should be

very useful in the study of wave propagation in solids

[3].

It can be shown [2] that two types of waves, propa-

gating in the direction of the dielectric inhornogeneity,

may exist: one with its electric vector transverse to the

direction of propagation called a TE wave, and the

other with its magnetic vector transverse to the direc-

tion of propagation, called a TM wave. The resultant

differential equations for TE waves and TM waves are,

respectively, the Mathieu and the Hill differential equa-

tions [4], [5]. The simpler case of the propagation of

TE waves in a sinusoidally stratified dielectric medium

has been considered most recently by Tamir, Wang and

Oliner [1], and discussed briefly by Yeh and Kapriel ian

[2]. The purpose of this paper is to consider the problem

of the propagation of TM waves in such an inhomoge-

neous medium. Since the solution of a I-Iill equation is

required, it is expected that the results will be rather in-
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volved. It is found that the propagation characteristics

of TM waves are quite different from those of TE waves

for large dielectric variations.

FORMULATION OF THE PROBLEM

It is assumed that the inhomogeneous dielectric me-

dium under consideration fills the entire space and

possesses a relative permittivity

and a relative permeability

P
— =1
PO

(1)

into (4), carrying out the vector operations and separat-

ing variables in rectangular coordinates, one obtains

@(iv, y, z) = {::’SX)}{::(W’U(l)’(’)(Z‘9)
and

W(Z, y, z) = {::(~z)}{::(~y)}’v(’)’(’)(z)’10)
where s, w, p, and q are separation constants. U(l)s (’)(z)

and V(’) ~(’) (z) satisfy, respectively, the differential

equations

(2)
{

-$ + [ko’(c(z)/eo) – s’ – w’]} u(’)’(’)(z) = o (11)

in the (x, y, z) rectangular coordinates. eo and V. are, and

respectively, the free space permittivity and permeabil-

ity. A and 6 are known positive constants, Furthermore,

058<1. d denotes the period of the sinusoidal varia- {:-(?)&i

tion (Fig. 1).

}
+ [ko’(6(z)/Eo) – p’ – q’] w’(’)(z) = o. (12)

A
c (z) Since we are only concerned with the propagation of

transverse magnetic waves in this inhomogeneous me-

Ca dium, the transverse electric waves will not be con-

\
sidered further. Putting (1) into (12), introducing the

+
dimensionless variable ~ = ~z/d, and making the sub-

1
26 I stitution

Fig. 1. Variation of permittivity as a function
of longitudinal distance. [$+x@hl)’(’)@)‘0

The source-free vector wave equations in this me- where

dium are: 28 Cos Z& 382 sin2 2.5 +~’

V X V X E – kI)’(e(Z)/eI))E = O
(3) k(g) =

()l–6cos2& –(l–acos 2&)’ T

Ve(z)
VXVXH– — X V X H – ko2(e(z)/eo)H = O (4)

6(z)

where E and H are, respectively, the electric and mag-

netic field vectors, ko2 = co2poeo,and a time dependence
~–iti$ is assumed. It can be shown that all field ~om.

ponents in this medium can be obtained from the scalar

quantities Q(x, y, z) and *(x, y, z) as follows [Z]:

WI) = v x [*(x, Y, Z)ezl (5)

for transverse electric waves; and

H(e) = V X [~($c, y, z)e.] (7)

E(e) = ~ V x V X [V?(Z, Y, z)al
OJe(z)

(8)

for transverse magnetic waves. e, is the unit vector in

the z direction. Upon substituting (5) into (3), and (7)

(14)

{
. A–A13cos2&– K:Y+WI}‘1’)

It is noted that since ~($) is an even periodic function, it

may be expanded in the Fourier cosine series

in which

‘“’($)’[A-W(i)’]
[

1
—

{1–~’–l 1
()

8 kod 2 4b3 – 2b
O1=–z— A+

T b2–1

~ = (3?2 + l)bn+’ – (374 – l)b”
n b2–1

(?22 2)

(16)

(17a)

(17b)

(17C)
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with

b=:–; dl– N. (17d)

The above series converges absolutely for O <~ <1. Sub-

stituting (16) into (14), one obtains

[ 1$+190+2 ~ 0. cos 2n~ Wf’J’(2)(~) = O (18)
n=l

which is the general form of Hill’s equation [4]- [6 ]. It

is known that two types of solutions fclr the Hill equa-

tion exist: one called the stable type, and the other

called the unstable type. In order to have propagating

waves in the z direction, only the stable type is allowed.

SOLUTIONS OF HILL’S EQUATION

With the help of Floquet’s Theorem [6] concerning

wave propagation in periodic media, the solutions of

Hill’s equation can be expressed in the following form:

cc

where ~ and Cn(~) are yet unknown cclefficients. After

substituting (19) into (18), and simplifying, one obtains

the following recursion relations:

.
– (/3+ 2n)2Cn + ~ OmC._m = O (20)

m=—cc

(7’ 2=.. –2, –1,0,1,2, ...)

with O–m = 0~. The above is a set of an infinite number of

homogeneous linear algebraic equations in G. For a

nontrivial solution to exist the determinant of these

equations must vanish. This equation is called the char-

acteristic equation of the Hill equation. Using an in-

genious method described in Morse and Feshbach [6],

it is possible to simplify this character-i stic equation to

give

(21)

where A(0) is the determinant of the matrix [ill],

whose elements are

M mm =1

– em..
Mm. ==— ?’)’? # n.

4m2 – 00
(22)

The characteristic number (1 can be obtained from (21).

Real values of ,f?yield stable solutions to Hill’s equa-

tion, while complex values of 6 produce unstable solu-

tions. Physically speaking the stable solutions corre-

spond to modulated propagating waves, and the un-

stable solutions correspond to damped or growing

waves. (The fields for the growing waves do not satisfy

the radiation condition at infinity, hence they must be

omitted.)

Numerical computation has been carried out for (2 1).

The values for the infinite determinant A(0) were ob-

tained by the successive approximation method [7]. In

other words, computations were carried out for a 3 ;>(3

determinant, a 4X 4 determinant, a 5 X 5 determinant,

etc., until the desired accuracy was reached. It was

found (numerically) that the infinite determinant. ccm-

verges quite rapidly within the present region of inter-

ests. At no time was any determinant greater than 7 X 7

required to achieve an accuracy of three significant fig-

ures.

Results of the computation are given in terms of a

“stability diagram, ” which is customary in the study of

Hill-type equations. Figures 2 and 3 show, respectively,

the “stability diagram” for the cases 6 = 0.25 and

8 = 0.4. The unshaded areas in these figures are the

“stable regions” wherein 6 is purely real; the shaded

areas are the “unstable regions” wherein (3 is complex.

It is noted that the value of P in the unshaded regions is

bounded by

~sl@lsm+l (??’ =0,1,2,

so that the value of m may be used to

propriate regions as shown in Figs. 2 and

4

. . “) (73)

label the ap-
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Fig. 2. Stability chart for Hill’s equation with ~= 0.25. Unstable
regions are shaded. Family of straight lines represents (28) for
various values of ,Yd/rr.
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Fig. 3. Stability chart for Hill’s equation with ~= 0.4. IJnstable re-
gions are shaded. Family of straight lines represent (28) for
various values of @/sr.
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It is interesting to note the differences between the

stability diagram for Mathieu equation and those given

in Figs. 2 and 3. Unlike the NIathieu case, curves sepa-

rating the stable and unstable regions do not necessarily

meet at the abscissa. As a matter of fact, in some in-

stances they cross over each other (as can be seen from

these figures) near the point (30=4.0. As 6 increases the

overlapped region becomes larger.

PROPAGATION CHARACTERISTICS OF TM WAVES

A. Injinite region jilled with sirmsoidally strati$ed dielec-

tric

The transverse magnetic field components of a TM

wave in an infinite medium filled with sinusoidally

stratified dielectric can be obtained from (7) and (10):

. l–~co52 1’2( d ) (25)

where the coefficients C. can be determined from (20) in

terms of CO. CO is obtained from a normalization condi-

tion. All electric field components may be found from

Maxwell’s equations.

Unlike the case of a TM wave propagating in an in-

finite homogeneous medium in which ~ is simply related

to ~ and q by the following:

&=k2_72

with ~z =fi2+q2 and k2 =U21.M where p and e are the

permeability and permittivity of the homogeneous me-

dium, the propagation constant ~ for the inhomogeneous

case is related to p and q through the stability diagrams

given by Figs. 2 and 3. Real values of @ as a function of

real values of y for a fixed value of A, ~, and kod are

shown in Figs. 4 through 6. It is recalled that complex

values of D indicate the presence of damped waves (i.e.,

nonpropagating waves), P and q are taken to be real.

The unshaded regions in these figures indicate the re-

gions in which (3 is real (i.e., regions in which propagating

waves may exist). One notes from these figures that for

very small values of kod, say kod <0.2, as long as

Yz < k02A, (3 is always real. However as kod increases,

there exist regions in which ~ is complex even though

~z < k02A. The presence of these stop band and pass

band regions is characteristic of wave propagation in

periodic structures [3].

B. Waveguide jilled longitudinally with sinusoidally

stratified dielectric

It is assumed that a rectangular waveguide of dimen-

sion hl and hz is filled completely with an inhomogeneous

dielectric medium, which varies sinusoidally in the

longitudinal direction. The general expressions for the

transverse magnetic field components of a TM wave are:

(
2*2 1/2

.: 1–6COSY )

“[-(w-’c0s31’2

(26)

(27)

where COm’T are arbitrary constants, and Cn~” can be

determined from (20) in terms of Corn’. Expressions for

the electric field components can easily be derived from

NIaxwell’s equations.

To obtain the dispersion curves for this case, one com-

bines (17a) and (17b)

()[-yd 2 1
O.++=– — – — 1 4b8 – 2b

T +~~-1 + b2_1 (28)

where b is given by (17d) and

‘2=(H+(Y (29)

Expression (28) is the equation of a family of straight

lines as shown in Figs. 2 and 3. For given values of

yd/~ and 8 one can then obtain the u –@ diagram from

these figures. The ~ –/3 diagrams are given for ~d/~

=0.1, 2.0, 5.0, and 6=0.25, 0.40 in Figs. 7 through 12.

The pass band and stop band characteristics can clearly

be seen. It is interesting to note that the first pass band

starts at a frequency which is lower than the cutoff fre-

quency for an identical waveguide filled with homo-

geneous dielectric material, which has a dielectric con-

stant equal to the average value of the inhomogeneous

dielectric.

The w – ~ diagrams given by Figs. 7 through 12 are

also applicable for circular waveguide except yl is

given by (1’~,/po) 2, where PO is the radius of the circular

Waveguide and 17~r are the roots of the equation

Jm(rm,) = o.
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dicated by a solid line.
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Fig. 11. Frequency as a function of B with 6 =0.4. Stop bands are
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