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Wave Propagation in

Sinusoidally Stratified Dielectric Media

C. YEH, veEMBER, TEEE, K. F. CASEY,

Abstract—The problem of the propagation of TM waves in a
sinusoidally stratified dielectric medium is considered. The propaga-
tion characteristics are determined from the stability diagram of the
resultant Hill’s equation. Numerical results show that the stability
diagrams for Hill’s equation and those for Mathieu’s equation are
quite different. Consequently, the dispersion properties of TM
waves and TE waves in this stratified medium are also different.
Detailed dispersion characteristics of TM waves in an infinite strati-
fied medium and in waveguides filled longitudinally with this strati-
fied material are obtained.

INTRODUCTION

HE PROBLEM OF electromagnetic wave propa-
Tgation in a sinusoidally varying dielectric medium

is not only of interest from a theoretical point of
view but also possesses many possible applications [1],
[2]. For example, a section of waveguide filled with this
type of inhomogeneous dielectric may be used as a band-
pass filter in the mm or in the optical range. The use of
an ultrasonic standing wave as a modulating device for
certain pressure sensitive media, such as carbon disul-

Manuscript received November 5, 1964; revised December 30,
1964. The work in this paper was supported by the Technical Ad-
visory Committee of the Joint Services Electronics Program.

The authors are with the Dept. of Electrical Engineering, Uni-
versity of Southern California, Los Angeles, Calif.

AanD Z. A. KAPRIELIAN, MEMBER, IEEE

fide, pentane, or nitric acid at optical frequencies to
achieve a sinusoidally varying dielectric medium may
be proposed. Other applications, such as the study of
acoustically modulated plasma column and the analysis
of sinusoidally modulated dielectric slab antenna, have
also been proposed. Furthermore, the results should be
very useful in the study of wave propagation in solids
3],
It can be shown [2] that two types of waves, propa-
gating in the direction of the dielectric inhomogeneity,
may exist: one with its electric vector transverse to the
direction of propagation called a TE wave, and the
other with its magnetic vector transverse to the direc-
tion of propagation, called a TM wave. The resultant
differential equations for TE waves and TM waves are,
respectively, the Mathieu and the Hill differential equa-
tions [4], [5]. The simpler case of the propagation of
TE waves in a sinusoidally stratified dielectric medium
has been considered most recently by Tamir, Wang and
Oliner [1], and discussed briefly by Yeh and Kaprielian
[2]. The purpose of this paper is to consider the problem
of the propagation of TM waves in such an inhomoge-
neous medium. Since the solution of a Hill equation is
required, it is expected that the results will be rather in-
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volved. It is found that the propagation characteristics
of TM waves are quite different from those of TE waves
for large dielectric variations.

FORMULATION OF THE PROBLEM

It is assumed that the inhomogeneous dielectric me-
dium under consideration fills the entire space and
possesses a relative permittivity

e(z) 27z
— =4 1—6cos——~> (1)
€0 d
and a relative permeability
= =1 *
Mo

in the (x, y, 2) rectangular coordinates. €, and u, are,
respectively, the free space permittivity and permeabil-
ity. 4 and ¢ are known positive constants. Furthermore,
0<6<1. d denotes the period of the sinusoidal varia-
tion (Fig. 1).

A
l €(2)
€a — - CN\-— - - ——
20
d d 3d g
3 2 2 d 2 2
Fig. 1. Variation of permittivity as a function

of longitudinal distance.

The source-free vector wave equations in this me-
dium are:

VX VX E — k?e2)/e) E =0 3)
Ve(z)

€\Z

VXVXH-— X VX H— Ek?e(z)/e)) H=0 (4)
where E and H are, respectively, the electric and mag-
netic field vectors, ko2 =w?uee, and a time dependence
et is assumed. It can be shown that all field com-
ponents in this medium can be obtained from the scalar
quantities ®(x, v, 2) and ¥(x, v, 2) as follows [2]:

E™ =V X [&(x, v, 2)e.] Q)
How = Ly X VX [3(, 9, 2)e.] (6)
W0

for transverse electric waves; and
H® =V X [¥(x,y, 5)e:] M

z

E© = )v X VX [¥(x, , 2)e.] (8)

WELZ,

for transverse magnetic waves. e, is the unit vector in
the z direction. Upon substituting (5) into (3), and (7)
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into (4), carrying out the vector operations and separat-
ing variables in rectangular coordinates, one obtains

B(x, 3, 7) = {Or; <sx>} {CZ <wy)} (T0.0@) ()
and
(e, y,2) = {C“S <px>} " (qy>} (ro.me) 10

where s, w, p, and g are separation constants, U ®)(3)
and V®.@(z) satisfy, respectively, the differential
equations

d2
{—— + [Ro2(e(z)/e0) — s — wz]} ULz =0 (11)
dz?

and
F-Css

+ [kee(e) ) — 9 — gﬂ]} rO.o@ =0, (12)

Since we are only concerned with the propagation of
transverse magnetic waves in this inhomogeneous me-
dium, the transverse electric waves will not be con-
sidered further. Putting (1) into (12), introducing the
dimensionless variable £=mz/d, and making the sub-
stitution

YO.0(5) = (1 — §cos 28)1PWOD(E)  (13)
gives
2
[+ @] weer -0 (19
where
25 cos 2 35 sin? 2% Fad\?
MO = sz 1 —scos2er (T)

{om s[4 (D] 0

It is noted that since A(§) is an even periodic function, it
may be expanded in the Fourier cosine series

AE) =6+ 2 2 8, cos 2nE

(16)
n=1
in which
= (D)= -G
T ko ko
1
N
b= — i<f95]—>2A il (17b)
2\ m b —1
6, — (31 + 1)Z:+2_—1 (3n — 1)b7 > (170
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with
1
5

1
= ——é—\/l — 82, (17d)
The above series converges absolutely for 0 <8 <1. Sub-
stituting (16) into (14), one obtains

az
[d§2 + 6o+ 2 Z‘;o cos 2%5] WL.®E =0 (18)
which is the general form of Hill's equation [4]-[6]. It
is known that two types of solutions for the Hill equa-
tion exist: one called the stable type, and the other
called the unstable type. In order to have propagating
waves in the z direction, only the stable type is allowed.

SoLUTIONS OF HiLL's EQUATION

With the help of Floquet’s Theorem [6] concerning
wave propagation in periodic media, the solutions of
Hill’'s equation can be expressed in the following form:

WW.@)(g) = gt i C,(B)et2int

N0

(19)

where 8 and C,(8) are yet unknown coefficients. After
substituting (19) into (18), and simplifying, one obtains
the following recursion relations:

(ﬂ="'-2,'—1,0,1,2,"')

with 6_,,=0,,. The above is a set of an infinite number of
homogeneous linear algebraic equations in C,. For a
nontrivial solution to exist the determinant of these
equations must vanish. This equation is called the char-
acteristic equation of the Hill equation. Using an in-
genious method described in Morse and Feshbach [6],
it is possible to simplify this characteristic equation to
give

= A(0) sin? ™

21

. Ky

sin? —
where A(0) is the determinant of the matrix [M],
whose elements are

Mum =1

- om—-n

4m® — O,

Mun = m # n. (22)
The characteristic number 8 can be obtained from (21).

Real values of g yield stable solutions to Hill's equa-
tion, while complex values of 8 produce unstable solu-
tions. Physically speaking the stable solutions corre-
spond to modulated propagating waves, and the un-
stable solutions correspond to damped or growing
waves. (The fields for the growing waves do not satisfy
the radiation condition at infinity, hence they must be

omitted.)
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Numerical computation has been carried out for (21).
The values for the infinite determinant A{0) were c¢b-
tained by the successive approximation method [7]. In
other words, computations were carried out for a 3X3
determinant, a 4 X4 determinant, a 5 X35 determinant,
etc., until the desired accuracy was reached. It was
found (numerically) that the infinite determinant con-
verges quite rapidly within the present region of inter-
ests. At no time was any determinant greater than 77
required to achieve an accuracy of three significant fig-
ures.

Results of the computation are given in terms of a
“stability diagram,” which is customary in the study of
Hill-type equations. Figures 2 and 3 show, respectively,
the “stability diagram” for the cases 3=0.25 and
6=0.4. The unshaded areas in these figures are the
“stable regions” wherein § is purely real; the shaded
areas are the “unstable regions” wherein § is complex.
It is noted that the value of 8 in the unshaded regions is

bounded by
m< |8l <m+1 m=0,1,2---) (23

so that the value of m may be used to label the ap-
propriate regions as shown in Figs. 2 and 3.

/
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Fig. 2. Stability chart for Hill's equation with §=0.25. Unstable
regions are shaded. Family of straight lines represents (28) for
various values of vd/w.
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Fig. 3. Stability chart for Hill's equation with §=0.4. Unstable re-

gions are shaded. Family of straight lines represent (28) for
various values of vd/.
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It is interesting to note the differences between the
stability diagram for Mathieu equation and those given
in Figs. 2 and 3. Unlike the Mathieu case, curves sepa-
rating the stable and unstable regions do not necessarily
meet at the abscissa. As a matter of fact, in some in-
stances they cross over each other (as can be seen from
these figures) near the point §,=4.0. As § increases the
overlapped region becomes larger.

PrOPAGATION CHARACTERISTICS OF TM WAVES

A. Infinite region filled with sinusoidally stratified dielec-
tric

The transverse magnetic field components of a TM
wave in an infinite medium filled with sinusoidally
stratified dielectric can be obtained from (7) and (10):

o«

H,® = >

n=—co

2ma\1?
1qCyeipreiauer B+an)wz/d <1 ~ 8 cos 7) (24)

0

Z _ ipcneipxeiqyei(ﬁ-l—Zn)rz /d

27w\ 1/?
~<1 — 6cos—>
d

where the coefficients C, can be determined from (20) in
terms of Cy. Cy is obtained from a normalization condi-
tion. All electric field components may be found from
Maxwell’s equations.

Unlike the case of a TM wave propagating in an in-
finite homogeneous medium in which § is simply related
to p and ¢ by the following:

g=r -

with y2=p24q? and k*=w?ue where u and e are the
permeability and permittivity of the homogeneous me-
dium, the propagation constant 8 for the inhomogeneous
case is related to p and g through the stability diagrams
given by Figs. 2 and 3. Real values of 8 as a function of
real values of v for a fixed value of 4, §, and k¢ are
shown in Figs. 4 through 6. It is recalled that complex
values of § indicate the presence of damped waves (i.e.,
nonpropagating waves). p and ¢ are taken to be real.
The unshaded regions in these figures indicate the re-
gions in which Bisreal (i.e., regions in which propagating
waves may exist). One notes from these figures that for
very small values of k¢, say kol <0.2, as long as
v2<ko*4, B is always real. However as k¢ increases,
there exist regions in which 8 is complex even though
v:<ko?4. The presence of these stop band and pass
band regions is characteristic of wave propagation in
periodic structures [3].

H,© =

(25)

B. Waveguide filled longitudinclly with sinusoidally
stratified dielectric

It is assumed that a rectangular waveguide of dimen-
sion 23 and %, is filled completely with an inhomogeneous
dielectric medium, which wvaries sinusoidally in the
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longitudinal direction. The general expressions for the
transverse magnetic field components of a TM wave are:

= = d mmTx Y
Hz(e) Z Z Z P Sin cOSs k4 gi(ﬁm’r+2n)1rz/d
m=1 r=1 n=— 1 Py
7'7|' 2w\ /2
—{1 — 6 cos — (26)
h2 d
- - - mrx | rw
Hy @ Z Z Z Cnm’r Cco8 Sin E4 gi(ﬁmyr+2n)1rz/d
me=1 r=1 n=—co 1 5

mw P sAE
[—(—— 1 —dcos— (27)
b d
where Cy™" are arbitrary constants, and C,”™" can be
determined from (20) in terms of C¢™". Expressions for
the electric field components can easily be derived from
Maxwell’s equations.

To obtain the dispersion curves for this case, one com-
bines (17a) and (17b)

ot e (Y [ ] T
0 T A1 — 42 2 —1
where b is given by (17d) and
S e
h b

Expression (28) is the equation of a family of straight
lines as shown in Figs. 2 and 3. For given values of
vd/m and & one can then obtain the w—@ diagram from
these figures. The w—@ diagrams are given for vyd/w
=0.1, 2.0, 5.0, and §=0.25, 0.40 in Figs. 7 through 12.
The pass band and stop band characteristics can clearly
be seen. It is interesting to note that the first pass band
starts at a frequency which is lower than the cutoff fre-
quency for an identical waveguide filled with homo-
geneous dielectric material, which has a dielectric con-
stant equal to the average value of the inhomogeneous
dielectric.

The w—pB diagrams given by Figs. 7 through 12 are
also applicable for circular waveguide except 2 is
given by (I'n:/po)?, where po is the radius of the circular
waveguide and T',, are the roots of the equation

TuTmr) = O.
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Fig. 9. Frequency as a function of 8 with §=0.25. Stop bands are
shaded. The dot-dash line represents the cutoff frequency of a
waveguide filled with a homogeneous dielectric medium with
e=¢,. A very narrow stable region near A(kod/7)?=23.0 is in-

dicated by a solid line.
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Frequency as a function of 8 with §=0.4. Stop bands are
shaded. The dot-dash line represents the cutoff frequency of a
waveguide filled with a homogeneous dielectric medium with
e=¢,. A very narrow stable region near A(dko/x)?=21 is indi-
cated by a solid line,



